Direct current (DC) arcing fault incident energy calculations are presented to assess the level of risk involved when working around high current DC apparatus. The proposed procedure allows evaluation of incident energy and arc flash boundaries, while taking into account as many circuit parameters as possible. These parameters include fixed or variable gap length, system voltage, available fault current, equipment configuration, circuit time constant and evaluated threshold energy for a second degree burn.

DC Arc Steady State Modeling

The resistance load line of the equivalent steady state circuit diagram representing a linear DC supply can be described by Equation (1) below:

\[V = V_s - I_r \cdot R_s \]

(1)

where \(V_s \) stands for open source voltage and \(R_s \) is system resistance including source and feeders. The applications include battery packs, power converters and chargers, mining sites, public transportation, solar and wind farms etc. Substituting into the Equation (1) voltage drop across an arc (\(V_{arc} \)), arcing current can be resolved as:

\[I_{arc} = I_{sc} \cdot \frac{(V_s - V_{arc})}{V_s} \]

(2)

where \(I_{sc} \) is prospective short-circuit current at the arcing point.

It is shown that arc voltage is mainly determined by the arc length, and the voltage is within the 10 to 20V/cm range for arc currents up to the order of 50kA. Incident energy exposure for an open-air arc where the heat transfer depends on the spherical energy density is then expressed as:

\[E_{inc} = V_{arc} \cdot I_{arc} \cdot t_{arc} / (4 \cdot \pi \cdot D^2) \]

(3)

where \(t_{arc} \) is the arc duration and \(D \) represents the distance from the arc. This formula assumes the radiant heat transfer. Not all of the arc energy will be transferred as radiant heat especially within the short time interval after the arc was ignited. Therefore, the Equation (3) will produce a conservative but safe estimate of incident energy exposure. For the arc in a box, the enclosure has a focusing effect on the incident energy. For the selected enclosure type and test distance, the incident energies calculated for enclosures are 2.2 times larger than the incident energies calculated for open air.

Equation (3) written in terms of arc flash boundary, becomes:

\[AFB = \left(\frac{E_{arc}}{4 \cdot Et} \right)^{0.5} \]

(4)
where E_t stands for threshold incident energy to second degree burn evaluated as:

$$E_t=1.2*10^{-1}$$

(5)

DC Arc Transient Conditions

The problem of determining the arc flash boundary becomes less trivial when gap is not fixed and distance between anode and cathode is anticipated to increase by separation of the contacts. Also, the arc operates at the intersection of the arc volt-ampere characteristic curve and the resistance load line of the DC circuit. Therefore, the arcing current will stabilize itself at a fixed point on the curve and the arc will dissipate a relatively constant amount of power. However, it’s hard to predict how long it will take for the arcing current to stabilize before the arc burns out or is cleared by the upstream protective device. The load line may intercept the characteristic curve in two locations, but only one point is stable. The stable operating location is the point with the lowest arc voltage.

Stokes and Oppenlander demonstrated that there is a minimum voltage needed to maintain an arc. That minimum depends on the current magnitude, gap width, Z_g expressed in mm., I_{arc} is measured in amperes. Above that minimum, the arc V-I characteristic can be expressed as:

$$Varc=(20+0.534*Z_g)*I_{arc}^{0.12}$$

(7)

To find the point where the arc V-I characteristic crosses the circuit load line, solve equations (2) and (7) using the iterative method. As the first approximation, assume $Varc$ is equal to half of the system voltage V_s.

Then, follow the steps below:

1. determine I_{arc} from Equation (2)
2. substitute I_{arc} into Equation (7) to determine new $Varc$

Cycle through the steps listed above until the answers for $Varc$ converge. Additionally, circuit time constant affects current rise and protective device performance characteristics, thus impacting the arc duration. In this case, time current characteristic of the upstream protective device clearing the fault may have to be adjusted for the time constant. If this occurs, the process of determining the protective device operating time is cumbersome. First, the time-current characteristic of the protective device has to be analytically expressed as a function of the available fault current. A paper by Cynthis Cline provides an equation describing the relationship between the effective RMS current, the available fault current, and the number of time constants:

$$I_{rms}=I_{arc}*K$$

(8)

where the K factor is expressed in numbers of time constants n:

$$K=(1 + 2e^{-n} - e^{-2n} - 1.5n)$$

(9)

This creates a dilemma due to the fact that one cannot determine the arcing time without the RMS value of the arcing current, and one cannot solve for the RMS current without the arcing time represented by the n term in Equation 9. This requires an iterative solution. As a first approximation, begin by assuming that I_{rms} equals I_{arc}, determining t_{arc} from the analytical expression for the fuse T-C characteristics $tarc=f(I_{rms})$, determining the number of time constants n and calculating K from Equation 9, substituting its value into Equation 8 to calculate the new RMS current, and then solving for the arc duration again. Once the first approximation of the arc duration has been made, determine the new number of time-constants n, re-calculate the K term and substitute its value into Equation 8. This produces a new I_{rms}. Re-calculate for a new t_{arc} by using the new I_{rms} and continue until the answers converge. Then, Equations (3) through (5) can be utilized to complete the DC arc analysis under the transient conditions.

Generalized Solution

With numerous variable parameters on hand, which re-
As a function of arcing current and arc resistance, and to determine maximum damage that can be caused by the arc during the selected time interval. A simplified block diagram on figure 2 below describes the proposed approach for calculating incident energies and for determining arc flash boundaries in DC power systems:

Summary

With a better understanding of the DC circuit parameters and the DC capabilities of fuses, modeling DC arcs and selecting appropriate fuses for mitigating arc-flash hazard can be accomplished without much difficulty. The generalized solution presented in this paper considers the worst-case scenario, effectively eliminating the need for accurately predicting arcing gap and arc resistance.

References

Michael Furtak is an application engineer with Mersen Canada Toronto, Inc. He specializes in the application of overcurrent and overvoltage protective devices in electrical distribution systems. Michael holds a B. Sc. In physics from Lviv State University (Ukraine) and is a professional member of OACETT and IEEE.

Lew Silecky is technical sales & marketing manager for Mersen Canada Toronto, Inc. He is a 30-year plus member of OACETT, technical committee member for the CSA Z462, Part 1 representative for the IAEI for Canadian Electrical Code sections 14, 18 and 42 and an IEEE and NFPA member.